Soil Contamination and Remediation
Live E-lecture Series
March - May 2017

Course Coordinator:
Dr. Margaret Graham (University of Edinburgh)

Contributors:
Dr. Margaret Graham (University of Edinburgh)
Dr. Rainer Schulin (ETH Zurich)
Dr. Lena Ma (University of Florida)
Dr. Ian Oliver (Keele University)
Dr. Sebastien Sauvé (Université de Montréal)
Dr. Rong Ji (Nanjing University)
Dr. Shaun Watmough (Trent University)
Dr. Huan Zhong (Nanjing University)

Content Outline
Part 1 – Introductory Lectures

L1 (w/c 06/03) Bioavailability of Metals in Contaminated Soils (Sauvé/Montréal)
L2 (w/c 13/03) Background concentrations of trace metals in soils (Ma/Florida)
L3 (w/c 20/03) Characterisation of Cr(VI)-Contaminated Urban Soils (Graham/UoE)
L4 (w/c 27/03) Antimony behaviour in shooting range soils (Schulin/ETH)

Part 2 – Contaminant Remediation – Case Studies

L5 (03/04) Remediation Methods for high-pH Cr(VI)-Contaminated Soils (Graham/UoE)
L6 (10/04) Earthworm-enhanced Remediation of Soil with Organic Contaminants (Ji/Nanjing)
L7 (17/04) Remediation of Mercury-contaminated Farming Soils (Zhong/Nanjing)
L8 (24/04) Phytoremediation of As-contaminated soils (Ma/Florida)

Part 3 – Environmental Risk Assessment and Regulation

L9 (w/c 01/05) Principles and practise of terrestrial ecotoxicology (Oliver/Keele)
L10 (w/c 08/05) Terrestrial ecotoxicology for chemical risk assessment (Oliver/Keele)
L11 (w/c 15/05) Case studies for retroactive and proactive soil risk assessments (Watmough/Trent)

Zoom Video Conference

Before joining the video conference be sure your microphone and webcam are connected.

To access the e-lectures, participants will be sent an email meeting invitation with a link to join from PC, Mac, iOS or Android. Please save this email as it will not be sent out every week before the lectures.

Below is an example of the email meeting invitation:

Hello,

Trent University has invited you to a scheduled online Zoom meeting.

Topic: Zoom training
Date: Feb 27, 2017 4:00 PM Eastern Time (US and Canada)

Join from PC, Mac, iOS or Android: https://trentu.zoom.us/j/523225883

Or join from an H.323/SIP room system:
 - Dial: 162.255.37.11 (US West) or 162.255.35.11 (US East)
 - Meeting ID: 523 225 883

Click the link then follow the on-screen instructions.

To run Zoom click “Save File” and then the download arrow in the browser toolbar. Select the “Zoom_launcher.exe” file, then press “Run”.

Alternatively, a window will pop up with “Open URL:Zoom Launcher?” Click Yes.

Once Zoom has launched, click “Join Video Conference by Computer”

You then have the option to turn your video on or off in the bottom left of the window, as well as options to mute or unmute your microphone. It is advised during the presentation to mute your microphone, so as to avoid as much background noise as possible. The lecturer will advise how they wish you to ask questions during their talks, either using ‘chat’ or audio.

For more information on Zoom please visit: https://www.trentu.ca/it/user-guides/zoom-at-trent#joining
Synopses

Lecture 1: Chemical Speciation, Fractionation and Bioavailability of Metals in Contaminated Soils (Sébastien Sauvé / Montréal)

Metals in contaminated soils are for the most part bound to the solids and hence only a small fraction of the total metal content is potentially bioavailable for uptake or biological effects. The first step in determining bioavailability is to study what factors control the fractionation of metals between the solid and liquid phase. Mineral equilibrium calculations can inform on the solubility of some minerals but in most situations, sorption will be controlling soil solution concentration below what would be expected from mineral equilibrium. Solid-liquid distribution coefficients (Kd) can then be used to predict partitioning among the liquid and solid fractions. It is clear that soil solution pH, soil organic matter and soil texture will greatly influence this distribution.

Furthermore, a major portion of the metals occurring within the solution will be bound to dissolved organic matter and thus potentially of a lower bioavailability. The measurements and modelling of the chemical speciation of metals in soil solution is therefore key to the understanding of their fate and potential ecotoxicological impacts. This chemical speciation must be considered through measurements or modelling and its implications must somehow be considered within soil quality criteria derivation.

Lecture 2: Background concentrations of trace metals in soils (Lena Ma / Florida)

Arsenic contamination in soils is of great environmental concern due to its toxic effects as a carcinogen. There are thousands of arsenic-contaminated soils in worldwide due to widespread use of arsenic in the past. Based on the current guideline, soils can be cleaned to their natural background arsenic concentrations in soils. However, there is neither a scientific protocol available for determining arsenic background concentrations nor a good database to be used as a reference for such a purpose. Thus, a comprehensive study was conducted to determine the background concentrations of arsenic in Florida surface soils using 450, geographically and pedogenically representative, and chemically and physically characterized, soil samples. Arsenic concentrations in Florida soils varied not only with soil types but also with digestion methods. They were much lower compared to soils in the US and world, ranging from 0.1 to 50.6 mg kg$^{-1}$ with a geometric mean concentration of 0.42 mg kg$^{-1}$. It is thus very important to obtain valid background arsenic concentrations for cost-effectively cleaning up arsenic contaminated soils.

Lecture 3: Characterisation of Cr(VI)-Contaminated Urban Soils (Margaret Graham / University of Edinburgh)

- Why did Cr(VI) continue to leach from contaminated site more than 40 years after closure of the chemical factory?
- We will answer this question by considering the history of a major chrome producing site in Glasgow (Scotland) and then exploring the use of XRPD, SEM-EDX and XRF to characterise the chemical and physical forms of chromium present in the industrial wastes
Lecture 4: Antimony behaviour in shooting range soils (Schulin/ETH)

Switzerland has around 2000 active shooting ranges plus some military practicing grounds in the mountains, where soil contamination with antimony has raised public concern after authorities became aware of potential problems for the environment and human health some years ago. In a series of microcosm, pot, column and field lysimeter experiments, we investigated the behaviour of antimony in selected shooting range soils and potential risks, with particular emphasis on the effects of water-logging, which is a common problem in Swiss grassland soils. The lecture will focus on the results of these investigations.

Suggested Reading:
Hockmann et al., Environmental Chemistry, 2014, 11, 624-631
Hockmann et al., Chemosphere, 2015, 13, 536-543

Lecture 5: Earthworm-enhanced Remediation of Soil with Organic Contaminants (Rong Ji / Nanjing University)

Bioavailability and microbial activity are two of the determinants for degradation of organic contaminants in soil. Via their feeding activity, earthworms, especially the geophagous earthworms, have great impacts on soil physicochemical and biological properties, and therefore stimulate the dissipation of contaminants in soil by enhancing both degradation and bound-residue-formation of the contaminants.

Suggested reading:
Hickman, ZA; Reid, BJ. Earthworm assisted bioremediation of organic contaminants. Environ. Int. 2008, 34, 1072-1081.

Lecture 6: Remediation of Mercury-contaminated Farming Soils (Huan Zhong/ Nanjing University)

Recent studies reveal that consumption of contaminated rice could be an important pathway of human exposure to methylmercury, posing a health risk to human beings. Therefore, it would be of great importance to remediate Hg-contaminated farming soils. Immobilization and phytoextraction of Hg are two common ways to remediate the Hg-contaminated soils, and theories and examples are provided in this lecture.

Suggested reading:

Lecture 7: Developing a Remediation Method for high-pH Cr(VI)-Contaminated Soils (Graham/University of Edinburgh)

- How do you remediate Cr(VI) in contaminated soils which have high pH, low moisture content, low water permeability?
- We will review the options for remediation of Cr(VI)-contaminated soils
- We will then consider the reasons why “off-the-shelf” methods did not work before looking at the steps required to develop and apply a “fit-for-purpose” remediation strategy

Suggested Reading:

Lecture 8: Phytoremediation of As-contaminated soils (Ma/Florida)

Arsenic is of great environmental concern due to its extensive contamination and carcinogenic toxicity. Anthropogenic activities have resulted in numerous arsenic contaminated sites worldwide. The arsenic hyperaccumulator Pteris vittata L. (Chinese Brake fern) has many desirable attributes for use in phytoremediation of arsenic-contaminated soils (Ma et al., 2001). Pilot-scale field demonstration shows that the plant was effective in removing arsenic from the soil (14%) after two seasons. The plant’s abilities to produce large quantities of root exudates (to solubilize soil arsenic), to produce large root biomass (>fronds), to effectively translocate arsenic to the fronds (up to 95%), to reduce arsenic from arsenate-AsV to arsenite-AsIII (up to 100% arsenite) in the fronds, and to keep high concentration of P in the roots have all contributed to its capability to hyperaccumulate arsenic, making it a good candidate for use in phytoremediation of arsenic contaminated sites.

Lecture 9: Principles and practise of terrestrial ecotoxicology (Ian Oliver/Keele University)

Terrestrial ecotoxicology seeks to determine what levels of contaminants cause harm to organisms in soil systems. The lecture will introduce the principles that underpin the discipline and will cover the typical assays employed, organisms tested, and quantification of toxicity endpoints (toxicity metrics).

Suggested Reading:
Lecture 10: Terrestrial ecotoxicology for chemical risk assessment (Oliver / Keele)

Once generated, terrestrial ecotoxicology data can be employed to derive concentrations that will be unlikely to cause harm to soil dwelling organisms (i.e. Predicted No Effect Concentrations, or PNECS). PNECs enable risk assessment of the concentrations observed at contaminated sites. The derivation of these PNECS requires rigorous compilation, evaluation and combination of data from different soils and for different organisms in order to ensure that the derived values are protective for all.

Suggested reading:

Lecture 11: Case studies for retroactive and proactive soil risk assessments (Watmough/Trent)